MÜHENDİSLİK FAKÜLTESİ

Yazılım Mühendisliği

MATH 485 | Ders Tanıtım Bilgileri

Dersin Adı
Veri Analizi
Kodu
Yarıyıl
Teori
(saat/hafta)
Uygulama/Lab
(saat/hafta)
Yerel Kredi
AKTS
MATH 485
Güz/Bahar
3
0
3
8

Ön-Koşul(lar)
Yok
Dersin Dili
İngilizce
Dersin Türü
Seçmeli
Dersin Düzeyi
Lisans
Dersin Veriliş Şekli -
Dersin Öğretim Yöntem ve Teknikleri Deney / Laboratuvar / Atölye uygulama
Anlatım / Sunum
Dersin Koordinatörü
Öğretim Eleman(lar)ı
Yardımcı(ları)
Dersin Amacı Bu dersin temel amacı, veri analizi yöntemleri hakkında temel bilgiler vermek ve bu yöntemleri istatistiksel yazılım programları yardımı ile kullanabilmektir. Ders kapsamında temel istatistiksel yaklaşımların yanında modelleme üzerinde durulması hedeflenmektedir.
Öğrenme Çıktıları Bu dersi başarıyla tamamlayabilen öğrenciler;
  • Verileri tanımlayabilmek ve özetleyebilmek için grafik yöntemleri kullanabilecektir.
  • Değişkenler arasındaki ilişkileri analiz edebilecektir.
  • Değişkenler arasındaki ilişkileri ve regresyon modellerini analiz edebilecektir.
  • Birkaç kitle ortalamasını karşılaştırabilecektir.
  • Bir kitleye ilişkin hipotez testleri oluşturabilecektir.
  • Veri madenciliği ile ilgili kavramlarında basit sınıflama yöntemlerini kullanabilecektir.
Ders Tanımı Dersin temel konuları: verileri tanımlayabilmek için grafiksel ve sayısal yöntemler, istatistiksel modellerin kullanılması, model varsayımlarını istatistiksel yöntemler kullanarak kontrol etmek, hipotezleri test edebilmektir. Veri madenciliğinin temel kavramları.

 



Dersin Kategorisi

Temel Ders
Uzmanlık/Alan Dersleri
Destek Dersleri
İletişim ve Yönetim Becerileri Dersleri
Aktarılabilir Beceri Dersleri

 

HAFTALIK KONULAR VE İLGİLİ ÖN HAZIRLIK ÇALIŞMALARI

Hafta Konular Ön Hazırlık
1 Veri çözümlemeye giriş, veri bilimi veri bilimcisi, veri bilimcinin araç kutusu, SPSS, R ortamına giriş (Installation, Editors) R for Data Science, H. Wickham, G. Grolemund, (Ch-1, Ch-2), Introductory Statistics with R, P. Dalgaard (Ch-1)
2 R’da veri yapıları, hazır fonksiyonlar, R paketleri Introductory Statistics with R, P. Dalgaard (Ch-1)
3 Rassal veri, yoğunluk ve dağılım fonksiyonları, veri alış/verişi, veri manipülasyonu Introductory Statistics with R, P. Dalgaard (Ch-3)
4 Kontrol yapıları, koşullu ifadeler Introductory Statistics with R, P. Dalgaard (Ch-1.2)
5 Veri tanımlamada sayısal yöntemler, değişkenler arasındaki ilişki Introductory Statistics with R, P. Dalgaard (Ch-4)
6 Veri görselleştirme, veri tanımlamada görsel yöntemler R’da temel grafik sistemi ve temel grafikler Introductory Statistics with R, P. Dalgaard (Ch-4.2)
7 R’da ileri düzey grafikler-1, tidyverse yazım kuralları, R’da ileri düzey grafikler-2, ggplot2 R for Data Science, H. Wickham, G. Grolemund, (Ch-3)
8 Ara Sınav
9 Hipotez testi tek örneklem testleri Introductory Statistics with R, P. Dalgaard (Ch-5)
10 Hipotez testi İki örneklem testleri Introductory Statistics with R, P. Dalgaard (Ch-5)
11 Varsayımların kontrolü, uyum iyiliği tesleri Introductory Statistics with R, P. Dalgaard (Ch-5)
12 Basit Doğrusal regresyon ve korelasyon Introductory Statistics with R, P. Dalgaard (Ch-6)
13 Dinamik raporlama R for Data Science, H. Wickham, G. Grolemund, (Ch-27)
14 Veri madenciliği, İstatistiksel öğrenmenin temel kavramları, denetimli öğrenme, denetimsiz öğrenme R for Data Science, H. Wickham, G. Grolemund, (Ch-22)
15 Dönemin gözden geçirilmesi
16 Final Sınavı

 

Ders Kitabı

1- Introductory Statistics with R, P. Dalgaard, Springer, 2008. ISBN-13: 978-0-387-79054-1. (https://link.springer.com/book/10.1007/978-0-387-79054-1#toc)

 

2- R for Data Science, H. Wickham, G. Grolemund, 978-1491910399. (https://r4ds.had.co.nz

Önerilen Okumalar/Materyaller

1- R in Action: Data Analysis and Graphics with R. 2nd Ed., R. Kabacoff, 2015. 978-1617291388.

 

2- Practical Data Science with R, N. Zumel and J. Mount, Manning Publications, 2014. 9781617291562.

 

DEĞERLENDİRME ÖLÇÜTLERİ

Yarıyıl Aktiviteleri Sayı Katkı Payı %
Katılım
Laboratuvar / Uygulama
Arazi Çalışması
Küçük Sınav / Stüdyo Kritiği
Portfolyo
Ödev
Sunum / Jüri Önünde Sunum
1
10
Proje
1
20
Seminer/Çalıştay
Sözlü Sınav
Ara Sınav
1
30
Final Sınavı
1
40
Toplam

Yarıyıl İçi Çalışmalarının Başarı Notuna Katkısı
3
60
Yarıyıl Sonu Çalışmalarının Başarı Notuna Katkısı
1
40
Toplam

AKTS / İŞ YÜKÜ TABLOSU

Yarıyıl Aktiviteleri Sayı Süre (Saat) İş Yükü
Teorik Ders Saati
(Sınav haftası dahildir: 16 x teorik ders saati)
16
0
Laboratuvar / Uygulama Ders Saati
(Sınav haftası dahildir. 16 x uygulama/lab ders saati)
16
0
Sınıf Dışı Ders Çalışması
0
Arazi Çalışması
0
Küçük Sınav / Stüdyo Kritiği
0
Portfolyo
0
Ödev
0
Sunum / Jüri Önünde Sunum
1
0
Proje
0
Seminer/Çalıştay
0
Sözlü Sınav
0
Ara Sınavlar
1
0
Final Sınavı
1
0
    Toplam
0

 

DERSİN ÖĞRENME ÇIKTILARININ PROGRAM YETERLİLİKLERİ İLE İLİŞKİSİ

#
Program Yeterlilikleri / Çıktıları
* Katkı Düzeyi
1
2
3
4
5
1

Matematik, Fen Bilimleri, Bilgisayar Bilimleri ve Yazılım Mühendisliği konularında yeterli bilgi sahibidir; bu alanlardaki kuramsal ve uygulamalı bilgileri, Yazılım Mühendisliği problemlerinde kullanır.

X
2

Karmaşık Yazılım Mühendisliği problemlerini saptar, tanımlar, formüle eder ve çözer; bu amaca uygun analiz ve modelleme yöntemlerini seçer ve uygular.

X
3

Karmaşık bir yazılım sistemini, süreci veya ürünü gerçekçi kısıtlar ve koşullar altında, belirli gereksinimleri karşılayacak şekilde tasarlar, gerçekleştirir, sınar, doğrular, raporlar, ölçer ve bakımını yapar; bu amaçla modern yöntemleri uygular.

4

Yazılım Mühendisliği uygulamalarında karşılaşılan karmaşık problemlerin analizi ve çözümü için gerekli olan modern teknik ve araçları geliştirir, seçer ve kullanır; bilişim teknolojilerini etkin bir şekilde kullanır.

X
5

Yazılım Mühendisliği problemlerinin incelenmesi için deney tasarlar, deney yapar, veri toplar, sonuçları analiz eder ve yorumlar.

6

Yazılım Mühendisliği disiplini içinde ve çok disiplinli takımlarda etkin biçimde çalışır; bireysel çalışma sergiler.

7

Türkçe sözlü ve yazılı etkin iletişim kurar; etkin rapor yazar ve yazılı raporları anlar, tasarım ve üretim raporları hazırlar, etkin sunum yapar, açık ve anlaşılır talimat verir ve alır.

8

Mühendislik ve Yazılım uygulamalarının evrensel ve toplumsal boyutlarda sağlık, çevre ve güvenlik üzerindeki etkileri ve çağın mühendislik alanına yansıyan sorunları hakkında bilgi sahibidir; mühendislik ve yazılım çözümlerinin hukuksal sonuçlarının farkındadır.

9

Etik ilkelerine uygun davranma, mesleki ve etik sorumluluk bilincine sahiptir; mühendislik uygulamalarında kullanılan standartlar hakkında bilgi sahibidir. 

10

Proje yönetimi, risk yönetimi ve değişiklik yönetimi gibi, iş hayatındaki uygulamalar hakkında bilgi sahibidir; girişimcilik, yenilikçilik hakkında bilinçlidir; sürdürülebilir kalkınma hakkında bilgi sahibidir.

11

Bir yabancı dili kullanarak Yazılım Mühendisliği ile ilişkili konularda, bilgi toplar ve meslektaşları ile iletişim kurar. ("European Language Portfolio Global Scale", Level B1)

12

İkinci yabancı dili orta düzeyde kullanır.

13

Yaşam boyu öğrenmenin gerekliliği bilincindedir; bilgiye erişebilir, bilim ve teknolojideki gelişmeleri izler ve kendini sürekli yeniler; insanlık tarihi boyunca oluşan bilgi birikimini Yazılım Mühendisliği alanıyla ilişkilendirir. 

X

*1 Lowest, 2 Low, 3 Average, 4 High, 5 Highest

 


SOSYAL MEDYA

İzmir Ekonomi Üniversitesi
izto logo
İzmir Ticaret Odası Eğitim ve Sağlık Vakfı
kuruluşudur.
ieu logo

Sakarya Caddesi No:156
35330 Balçova - İzmir / TÜRKİYE

kampus izmir

Bizi Takip edin

İEU © Tüm hakları saklıdır.