broadAngle İzmir Ekonomi Üniversitesi’nde
Amerika ve İzmir’de faaliyet gösteren yazılım firmalarından broadAngle’ın (https://www.broadangle.com/) kurucu ortağı ve CEO’su Garrison Atkisson ile İEÜ 2017 mezunu kıdemli ...
Dersin Adı |
Otomatik Öğrenme Temelleri ve Uygulamaları
|
Kodu
|
Yarıyıl
|
Teori
(saat/hafta) |
Uygulama/Lab
(saat/hafta) |
Yerel Kredi
|
AKTS
|
CE 475
|
Güz/Bahar
|
2
|
2
|
3
|
7
|
Ön-Koşul(lar) |
|
|||||||
Dersin Dili |
İngilizce
|
|||||||
Dersin Türü |
Seçmeli
|
|||||||
Dersin Düzeyi |
Lisans
|
|||||||
Dersin Veriliş Şekli | - | |||||||
Dersin Öğretim Yöntem ve Teknikleri | TartışmaProblem çözmeSoru & CevapKritik vermeDeney / Laboratuvar / Atölye uygulamaAnlatım / Sunum | |||||||
Ulusal Meslek Sınıflandırma Kodu | - | |||||||
Dersin Koordinatörü | ||||||||
Öğretim Eleman(lar)ı | ||||||||
Yardımcı(ları) |
Dersin Amacı | Bu ders otomatik öğrenmeye istatiksel bir temel oluşturur ve öğrencilere bu temel üstünden otomatik öğrenmeyi tanıtır. Öğrenciler otomatik öğrenme algoritmalarını pratik problemlere uygulamayı, istatiksel analiz yöntemleri kullanarak uygun algoritma seçmeyi ve oluşturdukları modellerin doğruluk derecesini değerlendirmeyi öğrenir. | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Öğrenme Çıktıları |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||
Ders Tanımı | Doğrusal cebir ve olasılığın temelleri, doğrusal regresyon, doğrusal olmayan modeller, çapraz doğrulama, model seçimi, karar ağaçları ve destek vektör makineleri. |
|
Temel Ders | |
Uzmanlık/Alan Dersleri | ||
Destek Dersleri | ||
İletişim ve Yönetim Becerileri Dersleri | ||
Aktarılabilir Beceri Dersleri |
Hafta | Konular | Ön Hazırlık | Öğrenme Çıktısı |
1 | Introduction to Machine Learning | ISLR Ch.1 | |
2 | Conditional Probability and Linear Algebra review | Statistics for Engineers and Scientists by William Navidi, McGraw-Hill Education, 5th Edition, 2019. ISBN- 13: 978-1259717604 Ch. 2 | |
3 | Simple Linear Regression | ISLR Ch.3 | |
4 | Multiple Regression | ISLR Ch.3 | |
5 | Multiple Regression | ISLR Ch.3 | |
6 | Cross validation and bootstrapping | ISLR Ch.5 | |
7 | Model Selection | ISLR Ch.6 | |
8 | Nonlinear models | ISLR Ch.7 | |
9 | Decision Trees | ISLR Ch.8 | |
10 | Classification | ISLR Ch.4 | |
11 | Support Vector Machines | ISLR Ch.9 | |
12 | Principal Component Analysis | ISLR Ch.10 | |
13 | Clustering | ISLR Ch.10 | |
14 | Project Discussions and Presentations | ||
15 | Dönemin gözden geçirilmesi | ||
16 | Final Sınavı |
Ders Kitabı | An Introduction to Statistical Learning: with Applications in R, by Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani published by Springer ISBN-13: 978-1461471370 |
Önerilen Okumalar/Materyaller |
Yarıyıl Aktiviteleri | Sayı | Katkı Payı % | LO 1 | LO 2 | LO 3 | LO 4 | LO 5 |
Katılım | |||||||
Laboratuvar / Uygulama |
1
|
24
|
|||||
Arazi Çalışması | |||||||
Küçük Sınav / Stüdyo Kritiği |
4
|
8
|
|||||
Portfolyo | |||||||
Ödev | |||||||
Sunum / Jüri Önünde Sunum | |||||||
Proje |
1
|
26
|
|||||
Seminer/Çalıştay | |||||||
Sözlü Sınav | |||||||
Ara Sınav | |||||||
Final Sınavı |
1
|
42
|
|||||
Toplam |
Yarıyıl İçi Çalışmalarının Başarı Notuna Katkısı |
6
|
58
|
Yarıyıl Sonu Çalışmalarının Başarı Notuna Katkısı |
1
|
42
|
Toplam |
Yarıyıl Aktiviteleri | Sayı | Süre (Saat) | İş Yükü |
---|---|---|---|
Teorik Ders Saati (Sınav haftası dahildir: 16 x teorik ders saati) |
16
|
2
|
32
|
Laboratuvar / Uygulama Ders Saati (Sınav haftası dahildir. 16 x uygulama/lab ders saati) |
16
|
2
|
32
|
Sınıf Dışı Ders Çalışması |
14
|
3
|
42
|
Arazi Çalışması |
0
|
||
Küçük Sınav / Stüdyo Kritiği |
4
|
4
|
16
|
Portfolyo |
0
|
||
Ödev |
0
|
||
Sunum / Jüri Önünde Sunum |
0
|
||
Proje |
1
|
60
|
60
|
Seminer/Çalıştay |
0
|
||
Sözlü Sınav |
0
|
||
Ara Sınavlar |
0
|
||
Final Sınavı |
1
|
28
|
28
|
Toplam |
210
|
#
|
PÇ Sub | Program Yeterlilikleri / Çıktıları |
* Katkı Düzeyi
|
||||
1
|
2
|
3
|
4
|
5
|
|||
1 |
Mühendislik Bilgisi: Matematik, fen bilimleri, temel mühendislik, bilgisayarla hesaplama ve ilgili mühendislik disiplinine özgü konularda bilgi; bu bilgileri, karmaşık mühendislik problemlerinin çözümünde kullanabilme becerisi. |
-
|
X
|
-
|
-
|
-
|
|
1 |
Matematik |
-
|
-
|
-
|
-
|
-
|
|
2 |
Fen bilimleri |
-
|
-
|
-
|
-
|
-
|
|
3 |
Temel mühendislik |
-
|
-
|
-
|
-
|
-
|
|
4 |
Bilgisayarla hesaplama |
-
|
-
|
-
|
-
|
-
|
|
5 |
İlgili mühendislik disiplinine özgü konularda bilgi |
-
|
-
|
-
|
-
|
-
|
|
6 |
Bu bilgileri, karmaşık mühendislik problemlerinin çözümünde kullanabilme becerisi. |
-
|
-
|
-
|
-
|
-
|
|
2 |
Problem Analizi: Karmaşık mühendislik problemlerini, temel bilim, matematik ve mühendislik bilgilerini kullanarak ve ele alınan problemle ilgili BM Sürdürülebilir Kalkınma Amaçlarını* gözeterek tanımlama, formüle etme ve analiz becerisi* |
-
|
-
|
-
|
X
|
-
|
|
3 |
Mühendislik Tasarımı: Karmaşık mühendislik problemlerine yaratıcı çözümler tasarlama becerisi; karmaşık sistemleri, süreçleri, cihazları veya ürünleri gerçekçi kısıtları ve koşulları* gözeterek, mevcut ve gelecekteki gereksinimleri karşılayacak biçimde tasarlama becerisi. |
-
|
-
|
-
|
-
|
-
|
|
1 |
Karmaşık mühendislik problemlerine yaratıcı çözümler tasarlama becerisi |
-
|
-
|
-
|
-
|
-
|
|
2 |
Karmaşık sistemleri, süreçleri, cihazları veya ürünleri gerçekçi kısıtları ve koşulları* gözeterek, |
-
|
-
|
-
|
-
|
-
|
|
3 |
Mevcut ve gelecekteki gereksinimleri karşılayacak biçimde tasarlama becerisi |
-
|
-
|
-
|
-
|
-
|
|
4 |
Teknik ve Araçların Kullanımı: Karmaşık mühendislik problemlerinin analizi ve çözümüne yönelik, tahmin ve modelleme de dahil olmak üzere, uygun teknikleri, kaynakları ve modern mühendislik ve bilişim araçlarını, sınırlamalarının da farkında olarak seçme ve kullanma becerisi. |
-
|
-
|
-
|
-
|
X
|
|
5 |
Araştırma ve İnceleme: Karmaşık mühendislik problemlerinin incelenmesi için literatür araştırması, deney tasarlama, deney yapma, veri toplama, sonuçları analiz etme ve yorumlama dahil, araştırma yöntemlerini kullanma becerisi. |
-
|
-
|
X
|
-
|
-
|
|
1 |
Karmaşık mühendislik problemlerinin incelenmesi için literatür araştırması |
-
|
-
|
-
|
-
|
-
|
|
2 |
Deney tasarlama |
-
|
-
|
-
|
-
|
-
|
|
3 |
Deney yapma, veri toplama, sonuçları analiz etme ve yorumlama dahil, araştırma yöntemlerini kullanma becerisi |
-
|
-
|
-
|
-
|
-
|
|
6 |
Mühendislik Uygulamalarının Küresel Etkisi: Mühendislik uygulamalarının BM Sürdürülebilir Kalkınma Amaçları* kapsamında, topluma, sağlık ve güvenliğe, ekonomiye,sürdürülebilirlik ve çevreye etkileri hakkında bilgi; mühendislik çözümlerinin hukuksal sonuçları konusunda farkındalık. |
X
|
-
|
-
|
-
|
-
|
|
1 |
Mühendislik uygulamalarının BM Sürdürülebilir Kalkınma Amaçları* kapsamında, topluma, sağlık ve güvenliğe, ekonomiye, sürdürülebilirlik ve çevreye etkileri hakkında bilgi; (FENG101) |
-
|
-
|
-
|
-
|
-
|
|
2 |
Mühendislik çözümlerinin hukuksal sonuçları konusunda farkındalık. (FENG101) |
-
|
-
|
-
|
-
|
-
|
|
7 |
Etik Davranış: Mühendislik meslek ilkelerine* uygun davranma, etik sorumluluk hakkında bilgi; hiçbir konuda ayrımcılık yapmadan, tarafsız davranma ve çeşitliliği kapsayıcı olma konularında farkındalık. (FENG101) |
-
|
-
|
-
|
-
|
-
|
|
1 |
Mühendislik meslek ilkelerine* uygun davranma, etik sorumluluk hakkında bilgi |
-
|
-
|
-
|
-
|
-
|
|
2 |
Hiçbir konuda ayrımcılık yapmadan, tarafsız davranma ve çeşitliliği kapsayıcı olma konularında farkındalık. |
-
|
-
|
-
|
-
|
-
|
|
8 |
Bireysel ve Takım Çalışması: Bireysel olarak ve disiplin içi ve çok disiplinli takımlarda (yüz yüze, uzaktan veya karma) takım üyesi veya lideri olarak etkin biçimde çalışabilme becerisi. |
-
|
-
|
-
|
-
|
-
|
|
9 |
Sözlü ve Yazılı İletişim: Hedef kitlenin çeşitli farklılıklarını (eğitim, dil, meslek gibi) dikkate alarak, teknik konularda |
-
|
-
|
-
|
-
|
-
|
|
1 |
Sözlü (ENGxxx) |
-
|
-
|
-
|
-
|
-
|
|
2 |
Yazılı etkin iletişim kurma becerisi. (ENGxxx) |
-
|
-
|
-
|
-
|
-
|
|
10 |
Proje Yönetimi: Proje yönetimi ve ekonomik yapılabilirlik analizi gibi iş hayatındaki uygulamalar hakkında bilgi; girişimcilik ve yenilikçilik hakkında farkındalık. |
-
|
-
|
-
|
-
|
-
|
|
1 |
Proje yönetimi ve ekonomik yapılabilirlik analizi gibi iş hayatındaki uygulamalar hakkında bilgi; (FENG497-FENG498) |
-
|
-
|
-
|
-
|
-
|
|
2 |
Girişimcilik ve yenilikçilik hakkında farkındalık. (FENG101) |
-
|
-
|
-
|
-
|
-
|
|
11 |
Yaşam Boyu Öğrenme: Bağımsız ve sürekli öğrenebilme, yeni ve gelişmekte olan teknolojilere uyum sağlayabilme ve teknolojik değişimlerle ilgili sorgulayıcı düşünebilmeyi kapsayan yaşam boyu öğrenme becerisi. |
-
|
-
|
-
|
-
|
-
|
*1 Lowest, 2 Low, 3 Average, 4 High, 5 Highest
Amerika ve İzmir’de faaliyet gösteren yazılım firmalarından broadAngle’ın (https://www.broadangle.com/) kurucu ortağı ve CEO’su Garrison Atkisson ile İEÜ 2017 mezunu kıdemli ...
İzmir Ekonomi Üniversitesi, dünya çapında bir üniversiteye dönüşürken aynı zamanda küresel çapta yetkinliğe sahip başarılı gençler yetiştirir.
Daha Fazlası..İzmir Ekonomi Üniversitesi, nitelikli bilgi ve yetkin teknolojiler üretir.
Daha Fazlası..İzmir Ekonomi Üniversitesi, toplumsal fayda üretmeyi varlık nedeni olarak görür.
Daha Fazlası..