broadAngle İzmir Ekonomi Üniversitesi’nde
Amerika ve İzmir’de faaliyet gösteren yazılım firmalarından broadAngle’ın (https://www.broadangle.com/) kurucu ortağı ve CEO’su Garrison Atkisson ile İEÜ 2017 mezunu kıdemli ...
Dersin Adı |
Yapay Sinir Ağlarına Giriş
|
Kodu
|
Yarıyıl
|
Teori
(saat/hafta) |
Uygulama/Lab
(saat/hafta) |
Yerel Kredi
|
AKTS
|
CE 470
|
Güz/Bahar
|
3
|
0
|
3
|
5
|
Ön-Koşul(lar) |
Yok
|
|||||
Dersin Dili |
İngilizce
|
|||||
Dersin Türü |
Seçmeli
|
|||||
Dersin Düzeyi |
Lisans
|
|||||
Dersin Veriliş Şekli | - | |||||
Dersin Öğretim Yöntem ve Teknikleri | Problem çözmeOlgu / Vaka çalışmasıAnlatım / Sunum | |||||
Ulusal Meslek Sınıflandırma Kodu | - | |||||
Dersin Koordinatörü | ||||||
Öğretim Eleman(lar)ı | - | |||||
Yardımcı(ları) | - |
Dersin Amacı | Bu derste, Yapay Sinir Ağlarının (YSA’nın) yaygın kullanım bulan model ve algoritmaları verilecektir. Dersin içeriği temel sinir hücre modeli, algılayıcı, uyarlanır doğrusal eleman, en küçük kareler algoritması, Çok Katmanlı Algılayıcı (ÇKA), Geriye Yayılım (GY) öğrenme algoritması, Radyal Tabanlı Fonksiyon (RTF) ağları, kendi kendini düzenleyen ağ, vektör nicemlemeyi öğrenen ağ; Destek Vektör Makineleri (DVM), Sürekli zaman ve ayrık zaman Hopfield ağları, sınıflandırma teknikleri, örüntü tanıma, işaret işleme ve kontrol uygulamaları. | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Öğrenme Çıktıları |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||
Ders Tanımı | Ders, temel yapay sinir ağları modelleri ve öğrenme algoritmalarını, algılayıcı YSA modellerini, LMS algoritmasını, geriyayılım öğrenme algoritmasını, radyal tabanlı fonksiyon ağlarını, destek vektör makinelerini, Kohonen’in kendini düzenleyen ağını, Hopfield ağlarını, yapay sinir ağlarının işaret işleme, örüntü tanıma ve kontrol uygulamalarını içermektedir. |
|
Temel Ders | |
Uzmanlık/Alan Dersleri | ||
Destek Dersleri |
X
|
|
İletişim ve Yönetim Becerileri Dersleri | ||
Aktarılabilir Beceri Dersleri |
Hafta | Konular | Ön Hazırlık | Öğrenme Çıktısı |
1 | Biyolojik esinlenme. Yapay sinir ağları üzerine tarihsel notlar. Yapay sinir ağlarının uygulamaları. Yapay sinir ağ modellerinin ve öğrenme algoritmalarının bir sınıflaması. | Introduction. S. Haykin, Neural Networks and Learning Machines, Pearson Education, 3rd Ed., 2009, ISBN13 9780131293762 ISBN10 0131293761. Lecture Notes. | |
2 | Genel yapay sinir hücre modeli. Ayrıkdeğerli algılayıcı, eşik mantığı ve sınırları. Ayrıkzaman (dinamik) Hopfield ağları. Hebb kuralı. Bellek örüntü vektörlerinin dış çarpımı olarak başlantı ağırlık matrisi. | Chapter 1. S. Haykin, Neural Networks and Learning Machines, Pearson Education, 3rd Ed., 2009, ISBN13 9780131293762 ISBN10 0131293761. Lecture Notes. | |
3 | Eğiticili öğrenme. Algılayıcı öğrenme kuralı. Doğrusal uyarlanır eleman. Çıkış hatası minimizasyon problemi olarak eğiticili öğrenme. Minimizasyon için gradyendüşüm algoritması. En küçük kareler kuralı. | Chapter 2. S. Haykin, Neural Networks and Learning Machines, Pearson Education, 3rd Ed., 2009, ISBN13 9780131293762 ISBN10 0131293761. Lecture Notes. | |
4 | Tek katmanlı sürekli değerli algılayıcı. Doğrusal olmayan (sigmoidal) aktivasyon fonksiyonu. Delta kuralı. Grup ve veri tabanlı güncellenen gradyendüşüm algoritmaları. Deterministik ve stokastik gradyendüşüm algoritmalar için yakınsaklık koşulları. | Chapter 3. Chapter 4: Sections 4.1, 4.2, 4.16. S. Haykin, Neural Networks and Learning Machines, Pearson Education, 3rd Ed., 2009, ISBN13 9780131293762 ISBN10 0131293761. Lecture Notes. | |
5 | Evrensel yaklaşım makinesi olarak çok katmanlı algılayıcı. Fonksiyon gösterimleri ve yaklaşım problemi. Geriye yayılım algoritması. Yerel minimum problemi. Aşırı eğitim. | Chapter 4: Sections 4.4, 4.5, 4.8, 4.10, 4.12. S. Haykin, Neural Networks and Learning Machines, Pearson Education, 3rd Ed., 2009, ISBN13 9780131293762 ISBN10 0131293761. Lecture Notes. | |
6 | Ara Sınav I. | ||
7 | Grup ve veri uyarlamalı eğitim biçimleri. Eğitim kümesine karşı test kümesi. Aşırı uyma problemi. Ağların eğitim ve testinde pratik konular. Çok katmanlı algılayıcıların işaret işleme ve örüntü tanıma uygulamaları. | Chapter 4: Sections 4.3, 4.10., 4.11, 4.13, 4.14, 4.15, 4.19, 4.20. S. Haykin, Neural Networks and Learning Machines, Pearson Education, 3rd Ed., 2009, ISBN13 9780131293762 ISBN10 0131293761. | |
8 | Radyal Taban Fonksiyonlu (RTF) ağlar. RTF ağlarının doğrusal ağırlıkları, Gauss merkezleri ve genişliklerini belirlemek için geriye yayılım algoritması. Merkezlerin rastgele seçimi. Gauss merkezlerinin ve genişliklerinin belirlenmesinde giriş öbekleme ve giriş çıkış öbeklemenin kıyaslanması. Düzenlileştirme kuramı, karma Gauss (koşullu olasılık yoğunluk fonksiyonu) ve yapay sinir tabanlı bulanık sistem modelleri ile RTF ağlarının ilişkileri. | Chapter 5. S. Haykin, Neural Networks and Learning Machines, Pearson Education, 3rd Ed., 2009, ISBN13 9780131293762 ISBN10 0131293761 | |
9 | Veri gösterimi için parametrik ve parametrik olmayan yöntemlerin kıyaslanması. Vektör nicemleme problemi olarak eğiticisiz öğrenme. Yarışmacı ağlar. “Kazanan her şeyi alır” ağı. Kohonen’in özdüzenlemeli öznitelik haritası. Öbekleme. | Chapter 9. S. Haykin, Neural Networks and Learning Machines, Pearson Education, 3rd Ed., 2009, ISBN13 9780131293762 ISBN10 0131293761. | |
10 | Yapay sinir ağlarının işaret işleme uygulamaları. Temel bileşen analizi. Veri sıkıştırma ve indirgeme. Yapay sinir ağlarının görüntü ve 1 boyutlu işaret sıkıştırma ve dönüştürme uygulamaları. | Chapter 8. S. Haykin, Neural Networks and Learning Machines, Pearson Education, 3rd Ed., 2009, ISBN13 9780131293762 ISBN10 0131293761 | |
11 | Ara Sınav II | ||
12 | Yapay sinir ağlarının örüntü tanıma uygulamaları. Öznitelik çıkarımı için yapay sinir ağları. Doğrusal olmayan öznitelik dönüşümü. Veri kaynaştırma. Sınıflayıcı olarak yapay sinir ağları. Görüntü ve ses tanıma uygulamaları. | Sections 1.4,1.5., 3.11, 4.7, 5.8, 6.7, S. Haykin, Neural Networks and Learning Machines, Pearson Education, 3rd Ed., 2009, ISBN13 9780131293762 ISBN10 0131293761. | |
13 | Yapay sinir ağ modelleri ve ilişkin öğrenme algoritmalarının işaret işleme, örüntü tanıma ve kontrol uygulamalarının MATLAB nümerik yazılım ortamında gerçeklenmesi. | L. Fausett, Fundamentals of Neural Networks, Chapter 6, Prentice Hall, ISBN-13: 978-0133341867 | |
14 | Yapay sinir ağ modelleri, öğrenme algoritmaları ve uygulamalarının genel değerlendirmesi. | S. Haykin, Neural Networks and Learning Machines, Pearson Education, 3rd Ed., 2009, ISBN13 9780131293762 ISBN10 0131293761. | |
15 | Dersin gözden geçirilmesi | ||
16 | Final Sınavı |
Ders Kitabı | S. Haykin, Neural Networks and Learning Machines, Pearson Education, 3rd Ed., 2009, ISBN13 9780131293762 ISBN10 0131293761 |
Önerilen Okumalar/Materyaller | J. M. Zurada, Int. To Artificial Neural Systems, West Publishing Company, 1992 ISBN 053495460X, 9780534954604. L. Fausett, Fundamentals of Neural Networks, Prentice Hall, ISBN-13: 978-0133341867 |
Yarıyıl Aktiviteleri | Sayı | Katkı Payı % | LO 1 | LO 2 | LO 3 | LO 4 | LO 5 |
Katılım | |||||||
Laboratuvar / Uygulama | |||||||
Arazi Çalışması | |||||||
Küçük Sınav / Stüdyo Kritiği | |||||||
Portfolyo | |||||||
Ödev |
5
|
20
|
|||||
Sunum / Jüri Önünde Sunum | |||||||
Proje |
1
|
30
|
|||||
Seminer/Çalıştay | |||||||
Sözlü Sınav | |||||||
Ara Sınav |
2
|
50
|
|||||
Final Sınavı | |||||||
Toplam |
Yarıyıl İçi Çalışmalarının Başarı Notuna Katkısı |
100
|
|
Yarıyıl Sonu Çalışmalarının Başarı Notuna Katkısı | ||
Toplam |
Yarıyıl Aktiviteleri | Sayı | Süre (Saat) | İş Yükü |
---|---|---|---|
Teorik Ders Saati (Sınav haftası dahildir: 16 x teorik ders saati) |
16
|
3
|
48
|
Laboratuvar / Uygulama Ders Saati (Sınav haftası dahildir. 16 x uygulama/lab ders saati) |
16
|
0
|
|
Sınıf Dışı Ders Çalışması |
14
|
3
|
42
|
Arazi Çalışması |
0
|
||
Küçük Sınav / Stüdyo Kritiği |
0
|
||
Portfolyo |
0
|
||
Ödev |
2
|
3
|
6
|
Sunum / Jüri Önünde Sunum |
0
|
||
Proje |
1
|
24
|
24
|
Seminer/Çalıştay |
0
|
||
Sözlü Sınav |
0
|
||
Ara Sınavlar |
2
|
15
|
30
|
Final Sınavı |
0
|
||
Toplam |
150
|
#
|
PÇ Sub | Program Yeterlilikleri / Çıktıları |
* Katkı Düzeyi
|
||||
1
|
2
|
3
|
4
|
5
|
|||
1 |
Mühendislik Bilgisi: Matematik, fen bilimleri, temel mühendislik, bilgisayarla hesaplama ve ilgili mühendislik disiplinine özgü konularda bilgi; bu bilgileri, karmaşık mühendislik problemlerinin çözümünde kullanabilme becerisi. |
-
|
-
|
-
|
X
|
-
|
|
1 |
Matematik |
-
|
-
|
-
|
-
|
-
|
|
2 |
Fen bilimleri |
-
|
-
|
-
|
-
|
-
|
|
3 |
Temel mühendislik |
-
|
-
|
-
|
-
|
-
|
|
4 |
Bilgisayarla hesaplama |
-
|
-
|
-
|
-
|
-
|
|
5 |
İlgili mühendislik disiplinine özgü konularda bilgi |
-
|
-
|
-
|
-
|
-
|
|
6 |
Bu bilgileri, karmaşık mühendislik problemlerinin çözümünde kullanabilme becerisi. |
-
|
-
|
-
|
-
|
-
|
|
2 |
Problem Analizi: Karmaşık mühendislik problemlerini, temel bilim, matematik ve mühendislik bilgilerini kullanarak ve ele alınan problemle ilgili BM Sürdürülebilir Kalkınma Amaçlarını* gözeterek tanımlama, formüle etme ve analiz becerisi* |
-
|
-
|
-
|
-
|
X
|
|
3 |
Mühendislik Tasarımı: Karmaşık mühendislik problemlerine yaratıcı çözümler tasarlama becerisi; karmaşık sistemleri, süreçleri, cihazları veya ürünleri gerçekçi kısıtları ve koşulları* gözeterek, mevcut ve gelecekteki gereksinimleri karşılayacak biçimde tasarlama becerisi. |
-
|
-
|
-
|
-
|
-
|
|
1 |
Karmaşık mühendislik problemlerine yaratıcı çözümler tasarlama becerisi |
-
|
-
|
-
|
-
|
-
|
|
2 |
Karmaşık sistemleri, süreçleri, cihazları veya ürünleri gerçekçi kısıtları ve koşulları* gözeterek, |
-
|
-
|
-
|
-
|
-
|
|
3 |
Mevcut ve gelecekteki gereksinimleri karşılayacak biçimde tasarlama becerisi |
-
|
-
|
-
|
-
|
-
|
|
4 |
Teknik ve Araçların Kullanımı: Karmaşık mühendislik problemlerinin analizi ve çözümüne yönelik, tahmin ve modelleme de dahil olmak üzere, uygun teknikleri, kaynakları ve modern mühendislik ve bilişim araçlarını, sınırlamalarının da farkında olarak seçme ve kullanma becerisi. |
-
|
-
|
X
|
-
|
-
|
|
5 |
Araştırma ve İnceleme: Karmaşık mühendislik problemlerinin incelenmesi için literatür araştırması, deney tasarlama, deney yapma, veri toplama, sonuçları analiz etme ve yorumlama dahil, araştırma yöntemlerini kullanma becerisi. |
X
|
-
|
-
|
-
|
-
|
|
1 |
Karmaşık mühendislik problemlerinin incelenmesi için literatür araştırması |
-
|
-
|
-
|
-
|
-
|
|
2 |
Deney tasarlama |
-
|
-
|
-
|
-
|
-
|
|
3 |
Deney yapma, veri toplama, sonuçları analiz etme ve yorumlama dahil, araştırma yöntemlerini kullanma becerisi |
-
|
-
|
-
|
-
|
-
|
|
6 |
Mühendislik Uygulamalarının Küresel Etkisi: Mühendislik uygulamalarının BM Sürdürülebilir Kalkınma Amaçları* kapsamında, topluma, sağlık ve güvenliğe, ekonomiye,sürdürülebilirlik ve çevreye etkileri hakkında bilgi; mühendislik çözümlerinin hukuksal sonuçları konusunda farkındalık. |
-
|
-
|
-
|
-
|
-
|
|
1 |
Mühendislik uygulamalarının BM Sürdürülebilir Kalkınma Amaçları* kapsamında, topluma, sağlık ve güvenliğe, ekonomiye, sürdürülebilirlik ve çevreye etkileri hakkında bilgi; (FENG101) |
-
|
-
|
-
|
-
|
-
|
|
2 |
Mühendislik çözümlerinin hukuksal sonuçları konusunda farkındalık. (FENG101) |
-
|
-
|
-
|
-
|
-
|
|
7 |
Etik Davranış: Mühendislik meslek ilkelerine* uygun davranma, etik sorumluluk hakkında bilgi; hiçbir konuda ayrımcılık yapmadan, tarafsız davranma ve çeşitliliği kapsayıcı olma konularında farkındalık. (FENG101) |
-
|
-
|
-
|
-
|
-
|
|
1 |
Mühendislik meslek ilkelerine* uygun davranma, etik sorumluluk hakkında bilgi |
-
|
-
|
-
|
-
|
-
|
|
2 |
Hiçbir konuda ayrımcılık yapmadan, tarafsız davranma ve çeşitliliği kapsayıcı olma konularında farkındalık. |
-
|
-
|
-
|
-
|
-
|
|
8 |
Bireysel ve Takım Çalışması: Bireysel olarak ve disiplin içi ve çok disiplinli takımlarda (yüz yüze, uzaktan veya karma) takım üyesi veya lideri olarak etkin biçimde çalışabilme becerisi. |
-
|
-
|
-
|
-
|
-
|
|
9 |
Sözlü ve Yazılı İletişim: Hedef kitlenin çeşitli farklılıklarını (eğitim, dil, meslek gibi) dikkate alarak, teknik konularda |
-
|
-
|
-
|
-
|
-
|
|
1 |
Sözlü (ENGxxx) |
-
|
-
|
-
|
-
|
-
|
|
2 |
Yazılı etkin iletişim kurma becerisi. (ENGxxx) |
-
|
-
|
-
|
-
|
-
|
|
10 |
Proje Yönetimi: Proje yönetimi ve ekonomik yapılabilirlik analizi gibi iş hayatındaki uygulamalar hakkında bilgi; girişimcilik ve yenilikçilik hakkında farkındalık. |
-
|
-
|
-
|
-
|
-
|
|
1 |
Proje yönetimi ve ekonomik yapılabilirlik analizi gibi iş hayatındaki uygulamalar hakkında bilgi; (FENG497-FENG498) |
-
|
-
|
-
|
-
|
-
|
|
2 |
Girişimcilik ve yenilikçilik hakkında farkındalık. (FENG101) |
-
|
-
|
-
|
-
|
-
|
|
11 |
Yaşam Boyu Öğrenme: Bağımsız ve sürekli öğrenebilme, yeni ve gelişmekte olan teknolojilere uyum sağlayabilme ve teknolojik değişimlerle ilgili sorgulayıcı düşünebilmeyi kapsayan yaşam boyu öğrenme becerisi. |
-
|
-
|
-
|
-
|
-
|
*1 Lowest, 2 Low, 3 Average, 4 High, 5 Highest
Amerika ve İzmir’de faaliyet gösteren yazılım firmalarından broadAngle’ın (https://www.broadangle.com/) kurucu ortağı ve CEO’su Garrison Atkisson ile İEÜ 2017 mezunu kıdemli ...
İzmir Ekonomi Üniversitesi, dünya çapında bir üniversiteye dönüşürken aynı zamanda küresel çapta yetkinliğe sahip başarılı gençler yetiştirir.
Daha Fazlası..İzmir Ekonomi Üniversitesi, nitelikli bilgi ve yetkin teknolojiler üretir.
Daha Fazlası..İzmir Ekonomi Üniversitesi, toplumsal fayda üretmeyi varlık nedeni olarak görür.
Daha Fazlası..