SE 420 | Course Introduction and Application Information

Course Name
Artificial Intelligence and Expert Systems
Code
Semester
Theory
(hour/week)
Application/Lab
(hour/week)
Local Credits
ECTS
SE 420
Fall/Spring
3
0
3
5

Prerequisites
None
Course Language
English
Course Type
Elective
Course Level
First Cycle
Course Coordinator
Course Lecturer(s)
Assistant(s) -
Course Objectives The goal of this course is to provide students with a survey of different aspects of Artificial Intelligence (AI).
Course Description The students who succeeded in this course;
  • Be able to develop a variety of approaches with general applicability.
  • Be able to understand AI search models and generic search strategies.
  • By using Bayesian networks , be able to use the probability as a mechanism for handling uncertainty in AI.
  • Be able to explore the design of AI systems that use learning to improve their performance on a given task.
  • Be able to present logic as a formalism for representing knowledge in AI systems.
  • Be able to address specific domains such as computer vision, natural language processing, and robotics.
Course Content This course provides an introduction to Artificial Intelligence (AI). In this course we will study a number of theories, mathematical formalisms, and algorithms, that capture some of the core elements of computational intelligence. We will cover some of the following topics: search, logical representations and reasoning, automated planning, representing and reasoning with uncertainty, decision making under uncertainty, and learning.

 



Course Category

Core Courses
Major Area Courses
Supportive Courses
X
Media and Management Skills Courses
Transferable Skill Courses

 

WEEKLY SUBJECTS AND RELATED PREPARATION STUDIES

Week Subjects Related Preparation
1 Introduction to AI Introduction to Expert Systems
2 Introduction to AI, Intelligent Agents, Examples to AI Languages Stuart Russell and Peter Norvig, Artificial Intelligence: A Modern Approach, Third Ed., Prentice Hall, 2010, ISBN10: 0132124114. Michael Negnevitsky, Artificial Intelligence: A Guide to Intelligent Systems (3rd Edition) 3rd Edition
3 Problem Solving by Search I Stuart Russell and Peter Norvig, Artificial Intelligence: A Modern Approach, Third Ed., Prentice Hall, 2010, ISBN10: 0132124114. Michael Negnevitsky, Artificial Intelligence: A Guide to Intelligent Systems (3rd Edition) 3rd Edition
4 Problem Solving by Search II Stuart Russell and Peter Norvig, Artificial Intelligence: A Modern Approach, Third Ed., Prentice Hall, 2010, ISBN10: 0132124114. Michael Negnevitsky, Artificial Intelligence: A Guide to Intelligent Systems (3rd Edition) 3rd Edition
5 Problem Solving by Search III Stuart Russell and Peter Norvig, Artificial Intelligence: A Modern Approach, Third Ed., Prentice Hall, 2010, ISBN10: 0132124114. Michael Negnevitsky, Artificial Intelligence: A Guide to Intelligent Systems (3rd Edition) 3rd Edition
6 Expert Systems I Stuart Russell and Peter Norvig, Artificial Intelligence: A Modern Approach, Third Ed., Prentice Hall, 2010, ISBN10: 0132124114. Michael Negnevitsky, Artificial Intelligence: A Guide to Intelligent Systems (3rd Edition) 3rd Edition
7 Expert Systems II Stuart Russell and Peter Norvig, Artificial Intelligence: A Modern Approach, Third Ed., Prentice Hall, 2010, ISBN10: 0132124114. Michael Negnevitsky, Artificial Intelligence: A Guide to Intelligent Systems (3rd Edition) 3rd Edition
8 AI: Language Processing Stuart Russell and Peter Norvig, Artificial Intelligence: A Modern Approach, Third Ed., Prentice Hall, 2010, ISBN10: 0132124114. Michael Negnevitsky, Artificial Intelligence: A Guide to Intelligent Systems (3rd Edition) 3rd Edition
9 AI: Machine Learning I Stuart Russell and Peter Norvig, Artificial Intelligence: A Modern Approach, Third Ed., Prentice Hall, 2010, ISBN10: 0132124114. Michael Negnevitsky, Artificial Intelligence: A Guide to Intelligent Systems (3rd Edition) 3rd Edition
10 AI: Machine Learning II Stuart Russell and Peter Norvig, Artificial Intelligence: A Modern Approach, Third Ed., Prentice Hall, 2010, ISBN10: 0132124114. Michael Negnevitsky, Artificial Intelligence: A Guide to Intelligent Systems (3rd Edition) 3rd Edition
11 AI: Information Retrieval Stuart Russell and Peter Norvig, Artificial Intelligence: A Modern Approach, Third Ed., Prentice Hall, 2010, ISBN10: 0132124114. Michael Negnevitsky, Artificial Intelligence: A Guide to Intelligent Systems (3rd Edition) 3rd Edition
12 Midterm
13 Presentations
14 Presentations- Review of the Semester
15 Review of the Semester  
16 Review of the Semester  

 

Course Notes/Textbooks

Stuart Russell and Peter Norvig, Artificial Intelligence: A Modern Approach, Third Ed., Prentice Hall, 2010, ISBN10: 0132124114.

 

Michael Negnevitsky, Artificial Intelligence: A Guide to Intelligent Systems (3rd Edition) 3rd Edition

Suggested Readings/Materials Internet

 

EVALUATION SYSTEM

Semester Activities Number Weigthing
Participation
1
10
Laboratory / Application
Field Work
Quizzes / Studio Critiques
5
20
Homework / Assignments
Presentation / Jury
2
40
Project
Seminar / Workshop
Portfolios
Midterms / Oral Exams
1
30
Final / Oral Exam
Total

Weighting of Semester Activities on the Final Grade
9
100
Weighting of End-of-Semester Activities on the Final Grade
Total

ECTS / WORKLOAD TABLE

Semester Activities Number Duration (Hours) Workload
Course Hours
Including exam week: 16 x total hours
16
3
48
Laboratory / Application Hours
Including exam week: 16 x total hours
16
Study Hours Out of Class
15
4
Field Work
Quizzes / Studio Critiques
5
8
Homework / Assignments
Presentation / Jury
2
20
Project
Seminar / Workshop
Portfolios
Midterms / Oral Exams
1
37
Final / Oral Exam
    Total
225

 

COURSE LEARNING OUTCOMES AND PROGRAM QUALIFICATIONS RELATIONSHIP

#
Program Competencies/Outcomes
* Contribution Level
1
2
3
4
5
1 Adequate knowledge in Mathematics, Science and Software Engineering; ability to use theoretical and applied information in these areas to model and solve Software Engineering problems X
2 Ability to identify, define, formulate, and solve complex Software Engineering problems; ability to select and apply proper analysis and modeling methods for this purpose X
3 Ability to design, implement, verify, validate, measure and maintain a complex software system, process or product under realistic constraints and conditions, in such a way as to meet the desired result; ability to apply modern methods for this purpose X
4 Ability to devise, select, and use modern techniques and tools needed for Software Engineering practice
5 Ability to design and conduct experiments, gather data, analyze and interpret results for investigating Software Engineering problems
6 Ability to work efficiently in Software Engineering disciplinary and multi-disciplinary teams; ability to work individually
7 Ability to communicate effectively in Turkish, both orally and in writing; knowledge of a minimum of two foreign languages
8 Recognition of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself
9 Awareness of professional and ethical responsibility
10 Information about business life practices such as project management, risk management, and change management; awareness of entrepreneurship, innovation, and sustainable development
11 Knowledge about contemporary issues and the global and societal effects of engineering practices on health, environment, and safety; awareness of the legal consequences of Software Engineering solutions

*1 Lowest, 2 Low, 3 Average, 4 High, 5 Highest