Visit of broadAngle in Izmir University of Economics
The founder and CEO of broadAngle, a software company operating in the United States and Izmir, Garrison Atkisson, along with ...
Course Name |
Software Testing
|
Code
|
Semester
|
Theory
(hour/week) |
Application/Lab
(hour/week) |
Local Credits
|
ECTS
|
SE 344
|
Fall/Spring
|
3
|
0
|
3
|
5
|
Prerequisites |
None
|
|||||
Course Language |
English
|
|||||
Course Type |
Elective
|
|||||
Course Level |
First Cycle
|
|||||
Mode of Delivery | - | |||||
Teaching Methods and Techniques of the Course | - | |||||
National Occupation Classification | - | |||||
Course Coordinator | ||||||
Course Lecturer(s) | ||||||
Assistant(s) | - |
Course Objectives | The primary objective of this course is to introduce students to, and provide core competencies in the fundamentals and principles of software testing. The secondary objective is to make the students familiar with the basic testing methods and technologies which are necessary for applying the concepts of quality assurance to obtain a high quality software product. The third objective of this course is to provide delegates with the necessary skills to implement software testing qualifications compliant with the requirements of the international software testing certifications. Both goals are addressed by recognizing software test processes, test documentation, test techniques, test management and supporting tools. | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning Outcomes |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||
Course Description | It is generally accepted that it is not possible to create perfect software. It is therefore necessary to test software before it is released to the users to reduce the risk of mistakes in software production having a negative impact when the software is used. It is equally necessary to ensure that testing is performed well. This course specifies definitions and concepts, test processes, test documentation, test techniques in software engineering. |
|
Core Courses | |
Major Area Courses |
X
|
|
Supportive Courses | ||
Media and Management Skills Courses | ||
Transferable Skill Courses |
Week | Subjects | Related Preparation | Learning Outcome |
1 | Fundamentals of software testing | Based on Chapter 1 of Black, van Veenendaal and Graham: Foundations of Software Testing, 3rd ed., Cengage Learning, 2012. | |
2 | Software engineering | Based on Chapter 1,2,3,4 of Sommerville, Ian: | |
3 | Software testing. | Based on Chapter 8 of Sommerville, Ian: Software Engineering, (10th ed.), Pearson, 2016 | |
4 | Testing throughout the software life cycle | Based on Chapter 2 of Black’s book. ISO/IEC/IEEE 29119-3 Software testing - Part 3: Test documentation. IEEE 829-2008 - IEEE Standard for Software and System Test Documentation. | |
5 | Static techniques | Based on Chapter 3 of Black’s book. | |
6 | Test Design Techniques: The Test Development Process | Based on Chapter 4 of Black’s book | |
7 | Test Design Techniques: Black Box testing techniques | Based on Chapter 4 of Black’s book | |
8 | Test Design Techniques: White Box testing techniques | Based on Chapter 4 of Black’s book | |
9 | Review | ||
10 | Test Management | Based on Chapter 5 of Black’s book. | |
11 | Test Management | Based on Chapter 5 of Black’s book. | |
12 | Mutation testing, calculation of the cost of executed mutants | Mutation Testing Techniques, Applications and Tools | |
13 | Case study 1 | National Transportation Communications for ITS Protocol Object Definitions for Dynamic Message Signs (DMS) | |
14 | Case study 2 | Online shop example, Marathon example | |
15 | Review | ||
16 | Review of the Semester |
Course Notes/Textbooks | Sommerville I. Software Engineering. 10th ed. Addison Wesley, 2016. Black R., van Veenendaal E. and Graham D. Foundations of Software Testing. 3rd ed. Cengage Learning, 2012. |
Suggested Readings/Materials | Bath G., McKay J. The Software Test Engineer’s Handbook: A Study Guide for the ISTQB Test Analyst and Technical Analyst Advanced Level Certificates. Rocky Nook, 2008. Bourque, P. and R.E. Fairley (eds.). 2014. Guide to the Software Engineering Body of Knowledge (SWEBOK). Los Alamitos, CA, USA: IEEE Computer Society. IEEE 829-2008 - IEEE Standard for Software and System Test Documentation. ISO/IEC/IEEE 29119-1Software testing - Part 1: Concepts and definitions. ISO/IEC/IEEE 29119-2 Software testing - Part 2: Test processes. ISO/IEC/IEEE 29119-3 Software testing - Part 3: Test documentation. ISO/IEC/IEEE P29119-4 DIS May 2013 Draft IEEE Standard Software testing -Part 4: Test techniques |
Semester Activities | Number | Weighting | LO 1 | LO 2 | LO 3 | LO 4 | LO 5 |
Participation | |||||||
Laboratory / Application | |||||||
Field Work | |||||||
Quizzes / Studio Critiques |
4
|
60
|
|||||
Portfolio | |||||||
Homework / Assignments | |||||||
Presentation / Jury | |||||||
Project | |||||||
Seminar / Workshop | |||||||
Oral Exams | |||||||
Midterm | |||||||
Final Exam |
1
|
40
|
|||||
Total |
Weighting of Semester Activities on the Final Grade |
4
|
60
|
Weighting of End-of-Semester Activities on the Final Grade |
1
|
40
|
Total |
Semester Activities | Number | Duration (Hours) | Workload |
---|---|---|---|
Theoretical Course Hours (Including exam week: 16 x total hours) |
16
|
3
|
48
|
Laboratory / Application Hours (Including exam week: '.16.' x total hours) |
16
|
0
|
|
Study Hours Out of Class |
15
|
3
|
45
|
Field Work |
0
|
||
Quizzes / Studio Critiques |
4
|
10
|
40
|
Portfolio |
0
|
||
Homework / Assignments |
0
|
||
Presentation / Jury |
0
|
||
Project |
0
|
||
Seminar / Workshop |
0
|
||
Oral Exam |
0
|
||
Midterms |
0
|
||
Final Exam |
1
|
17
|
17
|
Total |
150
|
#
|
PC Sub | Program Competencies/Outcomes |
* Contribution Level
|
||||
1
|
2
|
3
|
4
|
5
|
|||
1 |
Engineering Knowledge: Knowledge of mathematics, science, basic engineering, computer computation, and topics specific to related engineering disciplines; the ability to use this knowledge in solving complex engineering problems |
-
|
X
|
-
|
-
|
-
|
|
1 |
Mathematics |
-
|
-
|
-
|
-
|
-
|
|
2 |
Science |
-
|
-
|
-
|
-
|
-
|
|
3 |
Basic engineering |
-
|
-
|
-
|
-
|
-
|
|
4 |
Computer computation |
-
|
-
|
-
|
-
|
-
|
|
5 |
Topics specific to related engineering disciplines |
-
|
-
|
-
|
-
|
-
|
|
6 |
The ability to use this knowledge in solving complex engineering problems |
-
|
-
|
-
|
-
|
-
|
|
2 |
Problem Analysis: The ability to define, formulate, and analyze complex engineering problems by using fundamental science, mathematics, and engineering knowledge, while considering the relevant UN Sustainable Development Goals (SDGs) related to the problem. |
-
|
-
|
-
|
X
|
-
|
|
3 |
Engineering Design: The ability to design creative solutions to complex engineering problems; the ability to design complex systems, processes, devices, or products that meet present and future requirements, considering realistic constraints and conditions. |
-
|
-
|
-
|
-
|
X
|
|
1 |
The ability to design creative solutions to complex engineering problems |
-
|
-
|
-
|
-
|
-
|
|
2 |
Considering realistic constraints and conditions in designing complex systems, processes, devices, or products |
-
|
-
|
-
|
-
|
-
|
|
3 |
The ability to design in a way that meets current and future requirements |
-
|
-
|
-
|
-
|
-
|
|
4 |
Use of Techniques and Tools: The ability to select and use appropriate techniques, resources, and modern engineering and information technology tools, including prediction and modeling, for the analysis and solution of complex engineering problems, while being aware of their limitations |
-
|
-
|
-
|
X
|
-
|
|
5 |
Research and Investigation: The ability to use research methods, including literature review, designing experiments, conducting experiments, collecting data, analyzing and interpreting results, for the investigation of complex engineering problems. |
-
|
-
|
-
|
-
|
-
|
|
1 |
The ability to use research methods, including literature review |
-
|
-
|
-
|
-
|
-
|
|
2 |
Designing experiments |
-
|
-
|
-
|
-
|
-
|
|
3 |
Conducting experiments, collecting data, analyzing and interpreting results, for the investigation of complex engineering problems |
-
|
-
|
-
|
-
|
-
|
|
6 |
Global Impact of Engineering Practices: Knowledge of the impacts of engineering practices on society, health and safety, the economy, sustainability, and the environment within the scope of the UN Sustainable Development Goals (SDGs); awareness of the legal consequences of engineering solutions |
-
|
-
|
-
|
-
|
-
|
|
1 |
Global Impact of Engineering Practices: Knowledge of the impacts of engineering practices on society, health and safety, the economy, sustainability, and the environment within the scope of the UN Sustainable Development Goals (SDGs) |
-
|
-
|
-
|
-
|
-
|
|
2 |
Awareness of the legal consequences of engineering solutions |
-
|
-
|
-
|
-
|
-
|
|
7 |
Ethical Behavior: Acting in accordance with the principles of the engineering profession; knowledge of ethical responsibility; awareness of acting impartially and inclusively, without discrimination in any matter. (FENG101) |
-
|
-
|
-
|
-
|
-
|
|
1 |
Acting in accordance with the principles of the engineering profession; knowledge of ethical responsibility |
-
|
-
|
-
|
-
|
-
|
|
2 |
Awareness of acting impartially and inclusively, without discrimination in any matter. |
-
|
-
|
-
|
-
|
-
|
|
8 |
Individual and Team Work: The ability to work effectively as an individual and as a member or leader of both intra-disciplinary and interdisciplinary teams (whether face-to-face, remote, or hybrid). |
-
|
-
|
-
|
-
|
-
|
|
9 |
Verbal and Written Communication: Taking into account the various differences of the target audience (such as education, language, profession), particularly in technical matters. |
-
|
-
|
-
|
-
|
-
|
|
1 |
Verbal (ENGxxx) |
-
|
-
|
-
|
-
|
-
|
|
2 |
Written effective communication skills. (ENGxxx) |
-
|
-
|
-
|
-
|
-
|
|
10 |
Project Management: Knowledge of business practices such as project management and economic feasibility analysis; awareness of entrepreneurship and innovation. |
-
|
-
|
-
|
-
|
-
|
|
1 |
Knowledge of business practices such as project management and economic feasibility analysis; (FENG497-FENG498) |
-
|
-
|
-
|
-
|
-
|
|
2 |
Awareness of entrepreneurship and innovation. (FENG101) |
-
|
-
|
-
|
-
|
-
|
|
11 |
Lifelong Learning: The ability to learn independently and continuously, adapt to new and emerging technologies, and think critically about technological changes. |
-
|
-
|
-
|
-
|
-
|
*1 Lowest, 2 Low, 3 Average, 4 High, 5 Highest
The founder and CEO of broadAngle, a software company operating in the United States and Izmir, Garrison Atkisson, along with ...
As Izmir University of Economics transforms into a world-class university, it also raises successful young people with global competence.
More..Izmir University of Economics produces qualified knowledge and competent technologies.
More..Izmir University of Economics sees producing social benefit as its reason for existence.
More..