SE 307 | Course Introduction and Application Information

Course Name
Concepts of Object-Oriented Programming
Code
Semester
Theory
(hour/week)
Application/Lab
(hour/week)
Local Credits
ECTS
SE 307
Fall/Spring
2
2
3
7

Prerequisites
None
Course Language
English
Course Type
Elective
Course Level
First Cycle
Course Coordinator -
Course Lecturer(s)
Assistant(s) -
Course Objectives This course provides a conceptual and practical introduction to object oriented programming; through the widely used C# programming language. The fundamental concepts associated with objectoriented programming (for instance, object, class, protocol, hierarchy, inheritance, encapsulation, polymorphism, reuse of code, interfaces, collaboration, etc) will be introducedand demonstrated through the C# Programming language.
Course Description The students who succeeded in this course;
  • be able to explain principles of abstraction in program design
  • be able to explain the key concepts of object oriented process
  • be able to implement object oriented programs using C# programming language
  • be able to apply inheritance concepts to object oriented design
  • be able to implement polymorphism and abstract classes as part of object oriented programming
Course Content This course introduces the students to the fundamental concepts of object oriented programming using the C# programming language.

 



Course Category

Core Courses
Major Area Courses
X
Supportive Courses
Media and Management Skills Courses
Transferable Skill Courses

 

WEEKLY SUBJECTS AND RELATED PREPARATION STUDIES

Week Subjects Related Preparation
1 Introduction to object oriented concepts Weisfeld Ch. 1
2 How to think in terms of objects Weisfeld Ch. 2
3 Advanced object oriented concepts Weisfeld Ch. 3
4 The anatomy of a class Weisfeld Ch. 4
5 Class design guidelines Weisfeld Ch. 5
6 Designing with objects Weisfeld Ch. 6
7 Midterm exam
8 Mastering inheritence and composition Weisfeld Ch. 7
9 Frameworks and reuse: designing with interfaces and abstract classes Weisfeld Ch. 8
10 Building objects Weisfeld Ch. 9
11 Building objects Weisfeld Ch. 9
12 Creating object models with UML Weisfeld Ch. 10
13 Creating object models with UML Weisfeld Ch. 10
14 Project presentations
15 Project presentations
16 Review of the Semester  

 

Course Notes/Textbooks Weisfeld, M., The ObjectOriented Thought, 3rd ed., AddisonWesley, 2009.
Suggested Readings/Materials Sharp J., Microsoft Visual C# 2013 Step by Step, Microsoft Press

 

EVALUATION SYSTEM

Semester Activities Number Weigthing
Participation
-
-
Laboratory / Application
Field Work
Quizzes / Studio Critiques
Homework / Assignments
Presentation / Jury
Project
1
50
Seminar / Workshop
Oral Exams
Midterm
1
50
Final Exam
Total

Weighting of Semester Activities on the Final Grade
1
50
Weighting of End-of-Semester Activities on the Final Grade
1
50
Total

ECTS / WORKLOAD TABLE

Semester Activities Number Duration (Hours) Workload
Theoretical Course Hours
(Including exam week: 16 x total hours)
16
2
32
Laboratory / Application Hours
(Including exam week: 16 x total hours)
16
2
Study Hours Out of Class
16
4
Field Work
Quizzes / Studio Critiques
Homework / Assignments
Presentation / Jury
Project
1
52
Seminar / Workshop
Oral Exam
Midterms
1
20
Final Exam
    Total
200

 

COURSE LEARNING OUTCOMES AND PROGRAM QUALIFICATIONS RELATIONSHIP

#
Program Competencies/Outcomes
* Contribution Level
1
2
3
4
5
1

To have adequate knowledge in Mathematics, Science, Computer Science and Software Engineering; to be able to use theoretical and applied information in these areas on complex engineering problems.

X
2

To be able to identify, define, formulate, and solve complex Software Engineering problems; to be able to select and apply proper analysis and modeling methods for this purpose.

X
3

To be able to design, implement, verify, validate, document, measure and maintain a complex software system, process, or product under realistic constraints and conditions, in such a way as to meet the requirements; ability to apply modern methods for this purpose.

X
4

To be able to devise, select, and use modern techniques and tools needed for analysis and solution of complex problems in software engineering applications; to be able to use information technologies effectively.

X
5

To be able to design and conduct experiments, gather data, analyze and interpret results for investigating complex Software Engineering problems.

X
6

To be able to work effectively in Software Engineering disciplinary and multi-disciplinary teams; to be able to work individually.

X
7

To be able to communicate effectively in Turkish, both orally and in writing; to be able to author and comprehend written reports, to be able to prepare design and implementation reports, to be able to present effectively, to be able to give and receive clear and comprehensible instructions.

8

To have knowledge about global and social impact of engineering practices and software applications on health, environment, and safety; to have knowledge about contemporary issues as they pertain to engineering; to be aware of the legal ramifications of Engineering and Software Engineering solutions.

9

To be aware of ethical behavior, professional and ethical responsibility; to have knowledge about standards utilized in engineering applications.

10

To have knowledge about industrial practices such as project management, risk management, and change management; to have awareness of entrepreneurship and innovation; to have knowledge about sustainable development.

11

To be able to collect data in the area of Software Engineering, and to be able to communicate with colleagues in a foreign language.

X
12

To be able to speak a second foreign language at a medium level of fluency efficiently.

13

To recognize the need for lifelong learning; to be able to access information, to be able to stay current with developments in science and technology; to be able to relate the knowledge accumulated throughout the human history to Software Engineering.

X

*1 Lowest, 2 Low, 3 Average, 4 High, 5 Highest