CE 380 | Course Introduction and Application Information

Course Name
Computational Geometry
Code
Semester
Theory
(hour/week)
Application/Lab
(hour/week)
Local Credits
ECTS
CE 380
Fall/Spring
3
0
3
5

Prerequisites
None
Course Language
English
Course Type
Elective
Course Level
First Cycle
Course Coordinator -
Course Lecturer(s) -
Assistant(s) -
Course Objectives The objective of this course is to teach the students techniques of solving geometric problems using algorithmic methods.
Course Description The students who succeeded in this course;
  • will be able to formally define the primitive computational geometric objects,
  • will be able to develop polynomial time algorithms for computational geometry problems where such an algorithm exists,
  • will be able to compute the convex hull of a given point set,
  • will be able to construct the Voronoi diagram of a given point set,
  • will be able to calculate the Delaunay triangulation of a given point set,
  • will be able to triangulate a given polygon,
  • will be able to partition a given polygon into convex or monotone polygons.
Course Content Wellknown computational geometry problems, their algorithmic solutions and computational geometry problem solving techniques.

 



Course Category

Core Courses
Major Area Courses
Supportive Courses
X
Media and Management Skills Courses
Transferable Skill Courses

 

WEEKLY SUBJECTS AND RELATED PREPARATION STUDIES

Week Subjects Related Preparation
1 Background & Introduction
2 Polygon Triangulation I Chapter 1, Computational Geometry in C (2nd Edition), Joseph O'Rourke
3 Polygon Triangulation II Chapter 1, Computational Geometry in C (2nd Edition), Joseph O'Rourke
4 Polygon Partitioning Chapter 2, Computational Geometry in C (2nd Edition), Joseph O'Rourke
5 Convex Hulls in Two Dimensions I Chapter 3, Computational Geometry in C (2nd Edition), Joseph O'Rourke
6 Convex Hulls in Two Dimensions II Chapter 3, Computational Geometry in C (2nd Edition), Joseph O'Rourke
7 Review
8 Midterm
9 Convex Hulls in Three Dimensions I Chapter 4, Computational Geometry in C (2nd Edition), Joseph O'Rourke
10 Convex Hulls in Three Dimensions II Chapter 4, Computational Geometry in C (2nd Edition), Joseph O'Rourke
11 Voronoi Diagrams Chapter 5, Computational Geometry in C (2nd Edition), Joseph O'Rourke
12 Delaunay Triangulations Chapter 5, Computational Geometry in C (2nd Edition), Joseph O'Rourke
13 Search and Intersection I Chapter 7, Computational Geometry in C (2nd Edition), Joseph O'Rourke
14 Search and Intersection II Chapter 7, Computational Geometry in C (2nd Edition), Joseph O'Rourke
15 Review
16 Review of the Semester  

 

Course Notes/Textbooks Computational Geometry in C (2nd Edition), Joseph O'Rourke, Cambridge University Press
Suggested Readings/Materials Computational Geometry Algorithms and Applications (3rd Edition), Mark De Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars, SpringerVerlag Publishing

 

EVALUATION SYSTEM

Semester Activities Number Weigthing
Participation
Laboratory / Application
Field Work
Quizzes / Studio Critiques
Homework / Assignments
2
40
Presentation / Jury
Project
Seminar / Workshop
Portfolios
Midterms / Oral Exams
1
25
Final / Oral Exam
1
35
Total

Weighting of Semester Activities on the Final Grade
65
Weighting of End-of-Semester Activities on the Final Grade
35
Total

ECTS / WORKLOAD TABLE

Semester Activities Number Duration (Hours) Workload
Course Hours
Including exam week: 16 x total hours
16
3
48
Laboratory / Application Hours
Including exam week: 16 x total hours
16
Study Hours Out of Class
16
3
Field Work
Quizzes / Studio Critiques
Homework / Assignments
2
10
Presentation / Jury
Project
Seminar / Workshop
Portfolios
Midterms / Oral Exams
1
16
Final / Oral Exam
1
18
    Total
150

 

COURSE LEARNING OUTCOMES AND PROGRAM QUALIFICATIONS RELATIONSHIP

#
Program Competencies/Outcomes
* Contribution Level
1
2
3
4
5
1 Adequate knowledge in Mathematics, Science and Software Engineering; ability to use theoretical and applied information in these areas to model and solve Software Engineering problems X
2 Ability to identify, define, formulate, and solve complex Software Engineering problems; ability to select and apply proper analysis and modeling methods for this purpose
3 Ability to design, implement, verify, validate, measure and maintain a complex software system, process or product under realistic constraints and conditions, in such a way as to meet the desired result; ability to apply modern methods for this purpose
4 Ability to devise, select, and use modern techniques and tools needed for Software Engineering practice
5 Ability to design and conduct experiments, gather data, analyze and interpret results for investigating Software Engineering problems
6 Ability to work efficiently in Software Engineering disciplinary and multi-disciplinary teams; ability to work individually
7 Ability to communicate effectively in Turkish, both orally and in writing; knowledge of a minimum of two foreign languages
8 Recognition of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself
9 Awareness of professional and ethical responsibility
10 Information about business life practices such as project management, risk management, and change management; awareness of entrepreneurship, innovation, and sustainable development
11 Knowledge about contemporary issues and the global and societal effects of engineering practices on health, environment, and safety; awareness of the legal consequences of Software Engineering solutions

*1 Lowest, 2 Low, 3 Average, 4 High, 5 Highest