CE 370 | Course Introduction and Application Information

Course Name
Distributed Database Systems
Code
Semester
Theory
(hour/week)
Application/Lab
(hour/week)
Local Credits
ECTS
CE 370
Fall/Spring
3
0
3
5

Prerequisites
None
Course Language
English
Course Type
Elective
Course Level
First Cycle
Course Coordinator -
Course Lecturer(s) -
Assistant(s) -
Course Objectives The objective of this course is to teach the students the fundamental issues in distributed systems with a strong emphasis on data management. After taking the course, students are expected to have an understanding of topics ranging from distributed transaction management and enhanced concurrency control to data replication and distributed query processing and optimization.
Course Description The students who succeeded in this course;
  • will be able to explain distributed database technology comprehensively,
  • will be able to describe transaction management and concurrency control in distributed database management systems,
  • will be able to design distributed databases when fragmentation and/or replication are required,
  • will be able to assess the correctness of optimistic and pessimistic concurrency control algorithms which are based on either locking or timestamp ordering,
  • will be able to apply distributed recovery and commit protocols in the presence of site failures and network partitioning.
Course Content In this course, topics ranging from distributed database design, distributed transaction management and enhanced concurrency control to data replication and distributed query processing and optimization will be discussed.

 



Course Category

Core Courses
Major Area Courses
X
Supportive Courses
Media and Management Skills Courses
Transferable Skill Courses

 

WEEKLY SUBJECTS AND RELATED PREPARATION STUDIES

Week Subjects Related Preparation
1 Overview of Relational DBMS Ozsu, Valduriez, Principles of Distributed Database Systems, 2/e, Prentice Hall, 1999 (Ch. 2)
2 Distributed DBMS Architecture Ozsu, Valduriez, Principles of Distributed Database Systems, 2/e, Prentice Hall, 1999 (Ch. 4)
3 Distributed Database Design Ozsu, Valduriez, Principles of Distributed Database Systems, 2/e, Prentice Hall, 1999 (Ch. 5)
4 Semantic Data Control Ozsu, Valduriez, Principles of Distributed Database Systems, 2/e, Prentice Hall, 1999 (Ch. 6)
5 Overview of Query Processing Ozsu, Valduriez, Principles of Distributed Database Systems, 2/e, Prentice Hall, 1999 (Ch. 7)
6 Query Decomposition and Data Localization Ozsu, Valduriez, Principles of Distributed Database Systems, 2/e, Prentice Hall, 1999 (Ch. 8)
7 Centralized Query Optimization Ozsu, Valduriez, Principles of Distributed Database Systems, 2/e, Prentice Hall, 1999 (Ch. 9.1, 9.2)
8 Ara sınav / Midterm
9 Optimization of Distributed Queries Ozsu, Valduriez, Principles of Distributed Database Systems, 2/e, Prentice Hall, 1999 (Ch. 9.3, 9.4)
10 Introduction to Transaction Management Ozsu, Valduriez, Principles of Distributed Database Systems, 2/e, Prentice Hall, 1999 (Ch. 10)
11 Distributed Concurrency Control Ozsu, Valduriez, Principles of Distributed Database Systems, 2/e, Prentice Hall, 1999 (Ch. 11)
12 Distributed DBMS Reliability Ozsu, Valduriez, Principles of Distributed Database Systems, 2/e, Prentice Hall, 1999 (Ch. 12.1, 12.2, 12.3, 12.4)
13 Distributed DBMS Reliability Ozsu, Valduriez, Principles of Distributed Database Systems, 2/e, Prentice Hall, 1999 (Ch. 12.5, 12.6, 12.7, 12.8)
14 Presentations I İlgili Araştırma Makaleleri / Related Research Papers
15 Presentations II İlgili Araştırma Makaleleri / Related Research Papers
16 Review of the Semester  

 

Course Notes/Textbooks Ozsu, Valduriez, Principles of Distributed Database Systems, 2/e, Prentice Hall, 1999
Suggested Readings/Materials Related Research Papers

 

EVALUATION SYSTEM

Semester Activities Number Weigthing
Participation
Laboratory / Application
Field Work
Quizzes / Studio Critiques
Homework / Assignments
Presentation / Jury
1
20
Project
Seminar / Workshop
Portfolios
Midterms / Oral Exams
1
35
Final / Oral Exam
1
45
Total

Weighting of Semester Activities on the Final Grade
55
Weighting of End-of-Semester Activities on the Final Grade
45
Total

ECTS / WORKLOAD TABLE

Semester Activities Number Duration (Hours) Workload
Course Hours
Including exam week: 16 x total hours
16
3
48
Laboratory / Application Hours
Including exam week: 16 x total hours
16
Study Hours Out of Class
15
4
Field Work
Quizzes / Studio Critiques
Homework / Assignments
Presentation / Jury
1
18
Project
Seminar / Workshop
Portfolios
Midterms / Oral Exams
1
10
Final / Oral Exam
1
14
    Total
150

 

COURSE LEARNING OUTCOMES AND PROGRAM QUALIFICATIONS RELATIONSHIP

#
Program Competencies/Outcomes
* Contribution Level
1
2
3
4
5
1 Adequate knowledge in Mathematics, Science and Software Engineering; ability to use theoretical and applied information in these areas to model and solve Software Engineering problems X
2 Ability to identify, define, formulate, and solve complex Software Engineering problems; ability to select and apply proper analysis and modeling methods for this purpose X
3 Ability to design, implement, verify, validate, measure and maintain a complex software system, process or product under realistic constraints and conditions, in such a way as to meet the desired result; ability to apply modern methods for this purpose X
4 Ability to devise, select, and use modern techniques and tools needed for Software Engineering practice X
5 Ability to design and conduct experiments, gather data, analyze and interpret results for investigating Software Engineering problems
6 Ability to work efficiently in Software Engineering disciplinary and multi-disciplinary teams; ability to work individually
7 Ability to communicate effectively in Turkish, both orally and in writing; knowledge of a minimum of two foreign languages
8 Recognition of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself
9 Awareness of professional and ethical responsibility
10 Information about business life practices such as project management, risk management, and change management; awareness of entrepreneurship, innovation, and sustainable development
11 Knowledge about contemporary issues and the global and societal effects of engineering practices on health, environment, and safety; awareness of the legal consequences of Software Engineering solutions

*1 Lowest, 2 Low, 3 Average, 4 High, 5 Highest