CE 360 | Course Introduction and Application Information

Course Name
Wireless Communications
Code
Semester
Theory
(hour/week)
Application/Lab
(hour/week)
Local Credits
ECTS
CE 360
Fall/Spring
3
0
3
5

Prerequisites
None
Course Language
English
Course Type
Elective
Course Level
First Cycle
Course Coordinator
Course Lecturer(s)
Assistant(s) -
Course Objectives The objectives of this course are
to provide students with an understanding of the basics of wireless communications;
to introduce the modeling of wireless channels and the design of transmitters and receivers in wireless systems
to explain the concepts of site planning, installation and configuration.
to provide an overview of practical wireless cellular communication systems
to provide the basic skills needed to simulate and analyze wireless communication systems
Course Description The students who succeeded in this course;
  • will be able to explain the link level building blocks of transmitters and receivers in wireless systems,
  • will be able to model path loss in wireless channels,
  • will be able to model lognormal shadowing in wireless channels,
  • will be able to compare the digital modulation techniques,
  • will be able to describe the multicarrier modulations.
Course Content This course will cover basic topics in wireless communications for voice, data, and multimedia. It starts with a brief overview of current wireless systems and standards. We then characterize the wireless channel, including path loss for different environments, random lognormal shadowing due to signal attenuation, and the flat and frequencyselective properties of multipath fading. Next we examine the fundamental capacity limits of wireless channels and the characteristics of the capacityachieving transmission strategies. The course concludes with a brief overview of wireless networks, including multiple and random access techniques, WLANs, cellular system design, adhoc network design and applications for these systems, including the evolution of cell phones.

 



Course Category

Core Courses
X
Major Area Courses
Supportive Courses
Media and Management Skills Courses
Transferable Skill Courses

 

WEEKLY SUBJECTS AND RELATED PREPARATION STUDIES

Week Subjects Related Preparation
1 Introduction to Wireless Technology Chapter 1 – Wireless Communications & Networks, 2/E William Stallings
2 Transmission Fundamentals Chapter 2 – Wireless Communications & Networks, 2/E William Stallings
3 Network Architecture, Protocols and TCP/IP Suite Chapter 4 Wireless Communications & Networks, 2/E William Stallings
4 Antennas & Wave Propagation Theory – Part 1 Chapter 5 Wireless Communications & Networks, 2/E William Stallings
5 Antennas & Wave Propagation Theory – Part 2 Chapter 5 Wireless Communications & Networks, 2/E William Stallings
6 Multiple Access Methods &Signal Encoding Techniques – Part 1 Chapter 6 Wireless Communications & Networks, 2/E William Stallings
7 Multiple Access Methods &Signal Encoding Techniques – Part 2 Chapter 6 Wireless Communications & Networks, 2/E William Stallings
8 Spread Spectrum Chapter 7 Wireless Communications & Networks, 2/E William Stallings
9 Cellular Wireless Networks Chapter 10 Wireless Communications & Networks, 2/E William Stallings
10 Wireless LAN Operation, Structure & Layers – Part 1 Chapter 13 Wireless Communications & Networks, 2/E William Stallings
11 Wireless LAN Operation, Structure & Layers – Part 2 Chapter 14 Wireless Communications & Networks, 2/E William Stallings
12 Introduction to GSM Networks Summary of Introduction to GSM, 2/E Lawrence Harte
13 Mobile IP and Wireless Access Protocol Chapter 12 Wireless Communications & Networks, 2/E William Stallings
14 Satellite Communications Chapter 9 Wireless Communications & Networks, 2/E William Stallings
15 Overview of Future Wireless Cellular Systems (4G) Summary of Advanced Wireless Networks: 4G Technologies – Savo G. Glisic
16 Review of the Semester  

 

Course Notes/Textbooks Wireless Communications & Networks, 2/E William StallingsPublisher:  Prentice Hall ISBN13:  9780131918351
Suggested Readings/Materials

 

EVALUATION SYSTEM

Semester Activities Number Weigthing
Participation
Laboratory / Application
Field Work
Quizzes / Studio Critiques
Homework / Assignments
4
20
Presentation / Jury
Project
Seminar / Workshop
Portfolios
Midterms / Oral Exams
1
35
Final / Oral Exam
1
45
Total

Weighting of Semester Activities on the Final Grade
55
Weighting of End-of-Semester Activities on the Final Grade
45
Total

ECTS / WORKLOAD TABLE

Semester Activities Number Duration (Hours) Workload
Course Hours
Including exam week: 16 x total hours
16
3
48
Laboratory / Application Hours
Including exam week: 16 x total hours
16
Study Hours Out of Class
15
2
Field Work
Quizzes / Studio Critiques
Homework / Assignments
4
3
Presentation / Jury
Project
Seminar / Workshop
Portfolios
Midterms / Oral Exams
1
25
Final / Oral Exam
1
35
    Total
150

 

COURSE LEARNING OUTCOMES AND PROGRAM QUALIFICATIONS RELATIONSHIP

#
Program Competencies/Outcomes
* Contribution Level
1
2
3
4
5
1 Adequate knowledge in Mathematics, Science and Software Engineering; ability to use theoretical and applied information in these areas to model and solve Software Engineering problems X
2 Ability to identify, define, formulate, and solve complex Software Engineering problems; ability to select and apply proper analysis and modeling methods for this purpose
3 Ability to design, implement, verify, validate, measure and maintain a complex software system, process or product under realistic constraints and conditions, in such a way as to meet the desired result; ability to apply modern methods for this purpose X
4 Ability to devise, select, and use modern techniques and tools needed for Software Engineering practice
5 Ability to design and conduct experiments, gather data, analyze and interpret results for investigating Software Engineering problems
6 Ability to work efficiently in Software Engineering disciplinary and multi-disciplinary teams; ability to work individually
7 Ability to communicate effectively in Turkish, both orally and in writing; knowledge of a minimum of two foreign languages
8 Recognition of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself
9 Awareness of professional and ethical responsibility
10 Information about business life practices such as project management, risk management, and change management; awareness of entrepreneurship, innovation, and sustainable development
11 Knowledge about contemporary issues and the global and societal effects of engineering practices on health, environment, and safety; awareness of the legal consequences of Software Engineering solutions

*1 Lowest, 2 Low, 3 Average, 4 High, 5 Highest