Visit of broadAngle in Izmir University of Economics
The founder and CEO of broadAngle, a software company operating in the United States and Izmir, Garrison Atkisson, along with ...
Course Name |
Pattern Recognition
|
Code
|
Semester
|
Theory
(hour/week) |
Application/Lab
(hour/week) |
Local Credits
|
ECTS
|
CE 322
|
Fall/Spring
|
3
|
0
|
3
|
5
|
Prerequisites |
None
|
|||||
Course Language |
English
|
|||||
Course Type |
Elective
|
|||||
Course Level |
First Cycle
|
|||||
Mode of Delivery | - | |||||
Teaching Methods and Techniques of the Course | Problem SolvingApplication: Experiment / Laboratory / WorkshopLecture / Presentation | |||||
National Occupation Classification | - | |||||
Course Coordinator | - | |||||
Course Lecturer(s) | - | |||||
Assistant(s) | - |
Course Objectives | The course focuses on the theory and applications of pattern recognition. The topics include an overview of the problem of pattern classification, feature extraction, object recognition, statistical decision theory, parametric and non-parametric pattern recognition, supervised and unsupervised pattern recognition. | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning Outcomes |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||
Course Description | Learning and adoption, Bayesian decision theory, discriminant functions, parametric techniques, maximum likelihood estimation, Bayesian estimation, sufficient statistics, non-parametric techniques, linear discriminants, algorithm independent machine learning, classifiers, unsupervised learning, clustering. |
|
Core Courses | |
Major Area Courses | ||
Supportive Courses | ||
Media and Management Skills Courses | ||
Transferable Skill Courses |
Week | Subjects | Related Preparation | Learning Outcome |
1 | Introduction to Pattern Recognition, Learning and Adoption | Chapter 1.Sections 1.1-1.6. Duda, R.O. Hart, P.E. and Stork, D.G. Pattern Classification. Wiley-Interscience. 2nd Edition. 2001. | |
2 | Bayesian Decision Theory | Chapter 2.Sections 2.1-2.4. Duda, R.O. Hart, P.E. and Stork, D.G. Pattern Classification. Wiley-Interscience. 2nd Edition. 2001. | |
3 | Discriminant Functions | Chapter 2.Sections 2.5,2.6, 2.9. Duda, R.O. Hart, P.E. and Stork, D.G. Pattern Classification. Wiley-Interscience. 2nd Edition. 2001. | |
4 | Parametric Techniques: Maximum Likelihood Estimation and Bayesian Estimation, Sufficient Statistics | Chapter 3.Sections 3.1-3.7. Duda, R.O. Hart, P.E. and Stork, D.G. Pattern Classification. Wiley-Interscience. 2nd Edition. 2001. | |
5 | Non-Parametric Techniques | Chapter 4.Sections 4.1-4.4. Duda, R.O. Hart, P.E. and Stork, D.G. Pattern Classification. Wiley-Interscience. 2nd Edition. 2001. | |
6 | Linear Discriminant Functions | Chapter 5.Sections 5.1-5.8. Duda, R.O. Hart, P.E. and Stork, D.G. Pattern Classification. Wiley-Interscience. 2nd Edition. 2001. | |
7 | Non-Metric Methods | Chapter 8.Sections 8.1-8.4. Duda, R.O. Hart, P.E. and Stork, D.G. Pattern Classification. Wiley-Interscience. 2nd Edition. 2001. | |
8 | Midterm Exam | ||
9 | Algorithm-Independent Machine Learning | Chapter 9.Sections 9.1-9.3. Duda, R.O. Hart, P.E. and Stork, D.G. Pattern Classification. Wiley-Interscience. 2nd Edition. 2001. | |
10 | Algorithm-Independent Machine Learning – Resampling | Chapter 9.Sections 9.4,9.5. Duda, R.O. Hart, P.E. and Stork, D.G. Pattern Classification. Wiley-Interscience. 2nd Edition. 2001. | |
11 | Algorithm-Independent Machine Learning – Classifiers | Chapter 9.Sections 9.6,9.7. Duda, R.O. Hart, P.E. and Stork, D.G. Pattern Classification. Wiley-Interscience. 2nd Edition. 2001. | |
12 | Unsupervised Learning and Clustering | Chapter 10.Sections 10.1-10.4. Duda, R.O. Hart, P.E. and Stork, D.G. Pattern Classification. Wiley-Interscience. 2nd Edition. 2001. | |
13 | Unsupervised Learning and Clustering | Chapter 10.Sections 10.5-10.9. Duda, R.O. Hart, P.E. and Stork, D.G. Pattern Classification. Wiley-Interscience. 2nd Edition. 2001. | |
14 | Project Presentations | ||
15 | Semester Review | ||
16 | Final Exam |
Course Notes/Textbooks | Duda, R.O.Hart, P.E. and Stork, D.G. Pattern Classification. Wiley-Interscience. 2nd Edition. 2001. |
Suggested Readings/Materials | Bishop, C. M. Pattern Recognition and Machine Learning. Springer. 2007; Marsland, S. Machine Learning: An Algorithmic Perspective. CRC Press. 2009. (Also uses Python.); Theodoridis, S. and Koutroumbas, K. Pattern Recognition. Edition 4. Academic Press, 2008. |
Semester Activities | Number | Weighting | LO 1 | LO 2 | LO 3 | LO 4 | LO 5 |
Participation | |||||||
Laboratory / Application | |||||||
Field Work | |||||||
Quizzes / Studio Critiques | |||||||
Portfolio | |||||||
Homework / Assignments |
1
|
10
|
|||||
Presentation / Jury | |||||||
Project |
1
|
20
|
|||||
Seminar / Workshop | |||||||
Oral Exams | |||||||
Midterm |
1
|
30
|
|||||
Final Exam |
1
|
40
|
|||||
Total |
Weighting of Semester Activities on the Final Grade |
3
|
60
|
Weighting of End-of-Semester Activities on the Final Grade |
1
|
40
|
Total |
Semester Activities | Number | Duration (Hours) | Workload |
---|---|---|---|
Theoretical Course Hours (Including exam week: 16 x total hours) |
16
|
3
|
48
|
Laboratory / Application Hours (Including exam week: '.16.' x total hours) |
16
|
0
|
|
Study Hours Out of Class |
14
|
2
|
28
|
Field Work |
0
|
||
Quizzes / Studio Critiques |
0
|
||
Portfolio |
0
|
||
Homework / Assignments |
1
|
10
|
10
|
Presentation / Jury |
0
|
||
Project |
1
|
20
|
20
|
Seminar / Workshop |
0
|
||
Oral Exam |
0
|
||
Midterms |
1
|
20
|
20
|
Final Exam |
1
|
24
|
24
|
Total |
150
|
#
|
PC Sub | Program Competencies/Outcomes |
* Contribution Level
|
||||
1
|
2
|
3
|
4
|
5
|
|||
1 |
Engineering Knowledge: Knowledge of mathematics, science, basic engineering, computer computation, and topics specific to related engineering disciplines; the ability to use this knowledge in solving complex engineering problems |
-
|
-
|
-
|
X
|
-
|
|
1 |
Mathematics |
-
|
-
|
-
|
-
|
-
|
|
2 |
Science |
-
|
-
|
-
|
-
|
-
|
|
3 |
Basic engineering |
-
|
-
|
-
|
-
|
-
|
|
4 |
Computer computation |
-
|
-
|
-
|
-
|
-
|
|
5 |
Topics specific to related engineering disciplines |
-
|
-
|
-
|
-
|
-
|
|
6 |
The ability to use this knowledge in solving complex engineering problems |
-
|
-
|
-
|
-
|
-
|
|
2 |
Problem Analysis: The ability to define, formulate, and analyze complex engineering problems by using fundamental science, mathematics, and engineering knowledge, while considering the relevant UN Sustainable Development Goals (SDGs) related to the problem. |
-
|
-
|
-
|
-
|
X
|
|
3 |
Engineering Design: The ability to design creative solutions to complex engineering problems; the ability to design complex systems, processes, devices, or products that meet present and future requirements, considering realistic constraints and conditions. |
-
|
-
|
-
|
X
|
-
|
|
1 |
The ability to design creative solutions to complex engineering problems |
-
|
-
|
-
|
-
|
-
|
|
2 |
Considering realistic constraints and conditions in designing complex systems, processes, devices, or products |
-
|
-
|
-
|
-
|
-
|
|
3 |
The ability to design in a way that meets current and future requirements |
-
|
-
|
-
|
-
|
-
|
|
4 |
Use of Techniques and Tools: The ability to select and use appropriate techniques, resources, and modern engineering and information technology tools, including prediction and modeling, for the analysis and solution of complex engineering problems, while being aware of their limitations |
-
|
-
|
-
|
X
|
-
|
|
5 |
Research and Investigation: The ability to use research methods, including literature review, designing experiments, conducting experiments, collecting data, analyzing and interpreting results, for the investigation of complex engineering problems. |
-
|
-
|
-
|
X
|
-
|
|
1 |
The ability to use research methods, including literature review |
-
|
-
|
-
|
-
|
-
|
|
2 |
Designing experiments |
-
|
-
|
-
|
-
|
-
|
|
3 |
Conducting experiments, collecting data, analyzing and interpreting results, for the investigation of complex engineering problems |
-
|
-
|
-
|
-
|
-
|
|
6 |
Global Impact of Engineering Practices: Knowledge of the impacts of engineering practices on society, health and safety, the economy, sustainability, and the environment within the scope of the UN Sustainable Development Goals (SDGs); awareness of the legal consequences of engineering solutions |
-
|
-
|
-
|
-
|
-
|
|
1 |
Global Impact of Engineering Practices: Knowledge of the impacts of engineering practices on society, health and safety, the economy, sustainability, and the environment within the scope of the UN Sustainable Development Goals (SDGs) |
-
|
-
|
-
|
-
|
-
|
|
2 |
Awareness of the legal consequences of engineering solutions |
-
|
-
|
-
|
-
|
-
|
|
7 |
Ethical Behavior: Acting in accordance with the principles of the engineering profession; knowledge of ethical responsibility; awareness of acting impartially and inclusively, without discrimination in any matter. (FENG101) |
-
|
-
|
-
|
-
|
-
|
|
1 |
Acting in accordance with the principles of the engineering profession; knowledge of ethical responsibility |
-
|
-
|
-
|
-
|
-
|
|
2 |
Awareness of acting impartially and inclusively, without discrimination in any matter. |
-
|
-
|
-
|
-
|
-
|
|
8 |
Individual and Team Work: The ability to work effectively as an individual and as a member or leader of both intra-disciplinary and interdisciplinary teams (whether face-to-face, remote, or hybrid). |
-
|
-
|
-
|
-
|
-
|
|
9 |
Verbal and Written Communication: Taking into account the various differences of the target audience (such as education, language, profession), particularly in technical matters. |
-
|
-
|
-
|
-
|
-
|
|
1 |
Verbal (ENGxxx) |
-
|
-
|
-
|
-
|
-
|
|
2 |
Written effective communication skills. (ENGxxx) |
-
|
-
|
-
|
-
|
-
|
|
10 |
Project Management: Knowledge of business practices such as project management and economic feasibility analysis; awareness of entrepreneurship and innovation. |
-
|
-
|
-
|
-
|
-
|
|
1 |
Knowledge of business practices such as project management and economic feasibility analysis; (FENG497-FENG498) |
-
|
-
|
-
|
-
|
-
|
|
2 |
Awareness of entrepreneurship and innovation. (FENG101) |
-
|
-
|
-
|
-
|
-
|
|
11 |
Lifelong Learning: The ability to learn independently and continuously, adapt to new and emerging technologies, and think critically about technological changes. |
-
|
-
|
-
|
-
|
-
|
*1 Lowest, 2 Low, 3 Average, 4 High, 5 Highest
The founder and CEO of broadAngle, a software company operating in the United States and Izmir, Garrison Atkisson, along with ...
As Izmir University of Economics transforms into a world-class university, it also raises successful young people with global competence.
More..Izmir University of Economics produces qualified knowledge and competent technologies.
More..Izmir University of Economics sees producing social benefit as its reason for existence.
More..